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ABSTRACT 

QUANTIFYING POST-FIRE PONDEROSA PINE SNAGS USING GIS 

TECHNIQUES ON SCANNED AERIAL PHOTOGRAPHS 

Kevin Kent 

Snags are an important component of forest ecosystems because of their utility 

in forest-nutrient cycling and provision of critical wildlife habitat, as well as 

associated fuel management concerns relating to coarse woody debris (CWD). 

Knowledge of snag and CWD trajectories are needed for land managers to plan 

for long-term ecosystem change in post-fire regimes. This need will likely be 

exacerbated by increasingly warm and dry climatic conditions projected for the 

U.S. Southwest. One of the best prospects for studying fire-induced landscape 

change beyond the plot scale, but still at a resolution sufficient to resolve 

individual snags, is to utilize the available aerial photography record. Previous 

field-based studies of snag and CWD loads in the Southwest have relied on 

regional chronosequences to judge the recovery dynamic of ponderosa pine 

(Pinus ponderosa) burns. This previous research has been spatially and 

temporally restricted because of field survey extent limitations and uncertainty 

associated with the chronosequence approach (i.e., space-for-time substitution), 

which does not consider differences between specific site conditions and 

histories. 

 This study develops highly automated methods for remotely quantifying 

and characterizing the spatial and temporal distribution of large snags associated 

with severe forest fires from very high resolution (VHR) landscape imagery I 

obtained from scans of aerial photos. Associated algorithms utilize the sharp 
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edges, shape, shadow, and contrast characteristics of snags to enable feature 

recognition. Additionally, using snag shadow length, image acquisition time, and 

location information, heights were estimated for each identified snag. 

Furthermore, a novel solution was developed for extracting individual snags from 

areas of high snag density by overlaying parallel lines in the direction of the snag 

shadows and extracting local maxima lines contained by each snag polygon. 

Field survey data coincident to imagery coverage for post-fire ponderosa pine 

forests allowed calibration and accuracy assessment of these new tools. These 

new methods may allow for broader estimation of snag dynamics in post fire 

landscapes while significantly lowering the human and material costs of 

conducting such surveys. 

 Outcomes for these methods were mixed. Both the snag count and snag 

height values were chronically underestimated using a feature extraction method 

and an edge detection method; so, an adjustment constant was developed for 

the categories of each method. Average accuracies ranged from 54 to 46% lower 

than the field-based values for the count attribute and 2-12% over the ground 

values for the snag height attribute using these two approaches. These methods 

show much promise, and are less resource intensive than field surveys, but more 

research is needed to improve overall accuracy. 

Keywords: Snags, Coarse Woody Debris, Feature Detection, GIS, Aerial 

Photography, Edge Detection. 

  



iv 

Acknowledgments 
 
To Carol Chambers and Joy Mast, who provided original ground survey data from 

their plots in the Pumpkin Fire burn area. 

To the Joint Fire Science Program, whose funding through a Graduate Research 

Innovation grant (project ID: 13-3-01-28) allowed me to complete and expand this 

work. 

To the fellow grad students in my cohort who provided useful feedback in our 

brainstorming sessions. 

To my committee members Erik Schiefer, Mark Manone, and JP Roccaforte for 

their time, constructive input, and help along the way. 

And most of all to my advisor Erik Schiefer who this would not have been 

possible without. His invaluable knowledge, expertise, wisdom, support, and 

patience was much appreciated.  

  



v 

TABLE OF CONTENTS  
Abstract       ii 
Acknowledgments       iv 
Preface       vi 
Introduction       1 
Literature Review       4 
Materials and Methods       11 
Discussion       18 
Conclusion       24 
References       26 
Figures       39 
Tables       33 
Appendices       35 
  



vi 

 
Preface 

This thesis is original, unpublished work created wholly by the author. This 

document is composed in a Journal format using the style consistent with its 

expected publication’s guidelines, those of the Journal of Applied Remote 

Sensing, published by SPIE, the International Society for optics and photonics. 

This journal was chosen as the target for publication based on its relevance to 

the research in remote sensing. In preparation for this publication, the format of 

this thesis matches the required format of the journal for references, citations, 

and figures and tables are included outside of the body of text. To further prepare 

for publication some preliminary pages will need to be removed, 

acknowledgements will be moved to the end, a cover letter will be added, the 

literature review and introduction will be condensed, and other sections will be 

greatly condensed to reach the 4000 word limit. 
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Introduction 

Snags, or dead standing trees, are an important part of forest ecosystems, 

yet data on volume, and density are hard to come by (Ganey and Vojta 2012). 

In recent decades in the southwestern United States, fires have become 

larger and more severe because of changes to climate and impact of past forest 

management methods (Haslem et al. 2011). Recent studies have suggested that 

contemporary burning is altering some regional ecosystems enough that 

ponderosa pine (Pinus ponderosa) forests are failing to regenerate even decades 

after severe crown fires (Savage and Mast 2005, Roccaforte et al. 2012). 

Scientific- and management-related concerns associated with this ecological 

change range from the loss of important forest carbon sinks (Dore et al.2008), to 

maintaining critical wildlife habitat (Chambers and Mast 2005), to concerns over 

reburning of areas due to heavy loads of standing and fallen snags (Passovoy 

and Fulé 2006). Roccaforte et al. (2012) emphasized that knowledge of snag 

trajectories is needed for land managers to plan for long-term ecosystem 

changes in the post-fire regimes. Furthermore, this need may be exacerbated by 

an increasingly warm and dry climate during the 21st century, which is associated 

with the increasing number of severe forest fires (Seager and Vecchi 2010). 

In areas where they have been studied, snags exhibit large spatial and 

temporal variability (Morrison and Raphael 1993). Previously, studies of snags 

have relied on resource and time intensive ground surveys that have been 

necessarily limited in spatial extent (Passovoy and Fulé 2006). This research 

tests remote methods for measuring number and height of snags in post wildland 

fire ponderosa pine forests. Remote methods are unlikely to be as accurate as 
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ground surveys, but the tradeoffs could make them highly appealing in many 

situations. Such methods  can use existing photographic and digital image 

resources, are less costly and time consuming than ground surveys, and can be 

scaled up to provide greater measurement capabilities at the landscape scale.   

 Remote sensing provides a significant opportunity for alternative methods 

to measure snags in a post-fire forest system. Light detection and ranging 

(LiDAR) is one obvious method for achieving this (Martinuzzi et al. 2009), but 

may be cost prohibitive and relatively complicated to use (Laes et al. 2006). The 

existing aerial photography record provides a unique approach because it is 

relatively affordable, already has widespread spatial and temporal coverage in 

many areas, and requires less technical expertise. Furthermore, it is likely the 

only approach available for providing historical measurements, potentially 

expanding back to the mid-20th century. 

 In this research, I developed an innovative new approach for estimating 

snag density and heights using aerial photos as the source data. Digital scans of 

existing large-scale analog aerial photos provided imagery of the study area and 

a feature extraction learning algorithm was applied to identify snag projected 

areas from their shadows, which are the most recognizable and distinct feature of 

snags in vertical aerial photos. Using novel methods, I developed an algorithm to 

delineate individual snags from large and complex shapes. The time, date, and 

locations of the aerial photos were used to perform a trigonometric calculation 

estimating the height of each snag based on the length of its shadow. Finally, I 

compared the results to the ground survey data to provide adjustment factors to 

better estimate the site specific height of detected snags. This research was 
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conducted using ground plots from northern Arizona's 2000 Pumpkin Fire (5,970 

ha), with study areas coincident to plots previously ground-surveyed in 2001 and 

2003 (Chambers and Mast 2005), with this data used for calibration and ground 

validation. Furthermore, this method was tested against a manual digitization of 

snags and a generic edge detection model to assess the relative accuracy of 

each approach. 
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Literature Review 

Importance of Coarse Woody Debris 

Coarse Woody Debris (CWD) is the scientific term for any large dead 

wood in an ecosystem. The term CWD most commonly refers to fallen logs >10 

cm in diameter measured at breast height (dbh) (Stevens, 1997). However, CWD 

can also include stumps and standing dead trees, which are known as snags. 

CWD contributes to a wide array of ecological processes, many of which have 

only recently been more extensively studied. These aspects include nutrient 

cycles (Trudell et al., 2004), morphology (Nakamura and Swanson, 2006), post-

fire dynamics (Passovoy and Fulé, 2006; Roccaforte et al., 2012), wildlife habitat 

(Bütler and Schlaepfer, 2004), and carbon sequestration dynamics (Woodall and 

Liknes, 2008). Furthermore, the type (logs or snags) and quantity of CWD play 

separate roles in wildfire studies (Brown et al., 2003; Passovoy and Fulé, 2006). 

Passovy and Fulé (2006) specifically emphasize the importance of CWD 

quantity. The amount and dynamics of logs and snags affect many aspects of fire 

hazard, behavior, and effects. As the amount of CWD increases, the fire intensity 

increases and makes suppression more difficult. Ignition becomes easier as 

CWD becomes more rotten and dry, but emits less heat than non-decaying wood 

(Passovy and Fulé 2006). CWD can escalate large fires by producing a high 

surface heat, which can severely damage the soil. As the fuel load increases, so 

does the damage potential. Higher CWD loads can create a larger pulse of heat 

into the soil, creating a negative long term impact because soil development is a 

slow process, taking up to decades to recover to pre-fire nutrient levels. 

Huang et al. (2009) emphasize that the ability to understand and manage 



5 

the effects large fires has been impacted by the lack of broad scale data. Due to 

the lack of data, the distribution of post-fire CWD is not well incorporated into 

process-based ecological thought and models, resulting in little research 

quantifying CWD and other spatially complex patterns created by fire. 

 

Why Aerial Photos? 

 Coarse woody debris assessments have generally been performed using 

field studies which are labor-intensive, expensive, and limited in their use for 

estimating measurements at the landscape scale (Passovoy and Fulé, 2006; 

Roccaforte et al., 2012). In recent years, research examining the feasibility of 

remote sensing methods for inventorying CWD has increased. There have been 

attempts to combine multiple remote sensing methods to measure CWD; Huang 

et al. (2009), combined Airborne Synthetic Aperture Radar (AirSAR) and optical 

Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) imagery, while 

Tuominen and Haakana (2005) combined Landsat TM imagery and high altitude 

aerial photographs to measure forest characteristics, including CWD.  

Additionally, satellite imagery is limited by its resolution. For example, Landsat 

has a nominal ground sample distance of 30 m for multispectral bands. Also, 

products like DigitalGlobe's WorldView-3 are limited by US government-imposed 

constraints of 0.25 m resolution for commercial imagery (MarketWired, 2014).   

 More recently, many of these studies have focused on using LiDAR 

(Pesonan et al., 2008; Martinuzzi et al., 2009). While laser scanner sensing has 

achieved generally good results, the cost of obtaining data is prohibitive for many 

cases (Stoker et al., 2008). While some governments have begun to embrace 
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LiDAR, the scope of available data is limited. Unless the cost of obtaining LiDAR 

decreases significantly, the existing aerial photo record provides the most cost 

effective method for obtaining very high resolution (VHR) imagery suitable for 

inventorying CWD. In the United States, broad-scale aerial photos can be 

purchased from the USDA’s Aerial Photography Field Office and scanned into 

digital files at a sub-meter pixel resolution at a cost much cheaper than 

performing field studies or contracting LiDAR acquisitions. 

 Furthermore, color aerial photos covering the United States are widely 

available with 100% coverage over multiple dates, with even more special project 

missions for every National Forest. Also, aerial photos are the only remote 

sensing method that can provide high-resolution historical imagery now 

exceeding over a half century. This is extremely important for researchers 

studying historical trends in CWD dynamics. In addition, aerial photos generally 

have high temporal precision, with missions being repeated over the same area 

often on an intra- to inter-decadal period through programs like the historical 

National Aerial Photography Program (NAPP) and the current National 

Agriculture Imagery Program (NAIP). 

 

Field Studies 

 Much of the genesis for the ideas that motivated this study lies in the 

research done by Passovoy and Fulé (2006) and Roccaforte et al. (2012). These 

two studies employed near identical techniques to inventory CWD loads in 

wildfire burned areas in Arizona. Passovoy and Fulé investigated post-fire fuel 

dynamics, the decay and fall of standing snags, and the accumulation of the 
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fallen CWD on the surface, to help inform decisions about post-fire management, 

especially with respect to potential future fire behavior and effects. They 

concluded that CWD reaches its peak around five years after a fire. They 

surveyed sites from seven high-severity crown fires in the previous 3-27 years. At 

each site, they sampled 30 15 x 6 m plots and calculated CWD by using 15-

meter planar transects. Furthermore, they classified each snag into one of five 

categories, indicating its decay class. With these measurements, they were able 

to calculate CWD biomass using previously developed equations and coefficients 

for Southwestern ponderosa pine forests. Roccaforte et al. used similar methods 

sampled 14 sites from 11 different high-severity Arizona ponderosa pine 

dominated fires and concluded that CWD peaked 6-12 years after fires. They 

sampled 30, 90 x 90 m, plots at all but one site. While this is certainly a large 

sample, the total survey area for each of these sites is only 24 ha for each site, 

yet the fires ranged in size from 500 to 186,000 ha, clearly illustrating the 

drawback with ground surveys for measuring CWD at the landscape-scale, 

 Savage and Mast (2005) demonstrate the need for new ways to measure 

forest biometrics. By surveying the state of ten severely burned ponderosa pine 

forest fire sites in northern Arizona and New Mexico, they were able to assess 

recovery trajectories decades after the fire. They concluded that two general 

trajectories exist: a robust recovery to an unnaturally dense ponderosa pine 

forest or a deflection of recovery to another vegetation state. In addition, they 

described the biogeomorphic processes of forest regeneration following wildfires 

and the role wood debris plays in this process. In acknowledging the changing 

fire regime in Southwestern forests towards less frequent and severe crown fires 
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and the effects this is having on forest dynamics, they explored the causes as 

two pronged. One being largely based on climate change, tending towards 

warmer, dryer summers, the other being the effects of direct anthropogenic 

measures such as logging, planting, fire suppression, and landscape 

stratification. Their sampling was done across 10 southwestern fires, with a 1 x 

2.5 km grid laid out near the center of each burn where 30, 10 x 10 m, plots were 

measured for each site. This is only a total measurement of 0.3 ha for each burn, 

while burn sizes ranged from 800 to 36,000 ha, again demonstrating the spatial 

limitation of field surveys. 

 

Similar Studies and Techniques 

To date, most studies attempting delineation of individual trees from 

remote sensing imagery have focused on live, unburned habitats. Ardila et al. 

(2012) proposed a method using VHR imagery to delineate live deciduous trees 

in an urban setting. Their work relied heavily on color infrared (CIR) imagery to 

tell trees apart from each other, but they used a local maxima technique to 

delineate adjoining features. Their method for this relied on a pixel-region 

growing process suitable for round, deciduous tree crowns. Haara and 

Nevalainen (2002) studied the efficacy of using aerial data to delineate spruce 

trees and measure defoliation. They also utilized CIR imagery to analyze the 

scenes. Their measures for defoliation and tree count were inaccurate at the 

scale of individual trees, but achieved excellent accuracy at the stand-scale. 

Bütler and Schlaepfer (2004) is the most similar study to my own 

published so far. Their research looked at unmanaged, but unburned, spruce 
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forests in Switzerland using VHR aerial photography. Using stereoscopic CIR 

photos, they attempted to quantify large snags. By scanning standard 23 x 23 cm 

(9-inch) high resolution (1:10,000 nominal scale) photographs they were able to 

achieve a mean resolution of about 50 cm per pixel. CIR photography has been 

used in forest applications for many years because it has distinct advantages. 

Vegetation does a much better job of reflecting near-infrared electromagnetic 

waves than those in the visible range. Bütler & Schlaepfer note that with CIR 

photography live, dying, and dead snags provide a very distinguishable spectral 

response. The main problem with using CIR photos is they are underrepresented 

in the historical photo record in the United States, with often multiple decades 

between any repeat CIR photography, if any exists at all, while standard color 

photo surveys have been done with often intra-decadal frequency for many 

areas. Their work did not rely on automated classification of snag features; 

rather, the snags were manually digitized in a geographic information system 

(GIS). Detecting small snags was difficult, with accuracy rates for snag detection 

dropping sharply for snags with dbh < 25 cm. However, they attributed this 

inaccuracy to small snags being covered by the canopy or surrounding trees. For 

detecting snags with few or no branches they had to rely entirely on the shadow, 

which was only a “fine dark line.” This highlights the difficulty in the available 

methods for detecting snags without branches, as many are created after high-

severity fires, even when using CIR photography. Such snags appear only as a 

single point, especially if they are near the nadir of the aerial imagery. This 

becomes more complicated in dense stands where there can be canopy closure 

and terrain factors (i.e., variable slope angles and aspects). 
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 Hung et al. (2012) have demonstrated the feasibility of using only visual 

spectrum images to delineate objects. They traded multispectral imagery for high 

resolution (20 cm per pixel) images gathered from an unmanned aerial vehicle. 

Their method for feature detection involved using position, geometry, and 

appearance (including shadow) coupled with a spectral classification to 

distinguish objects. Their research focused on identifying crowns of living trees, 

but their methods can be adapted inventory CWD. 

 The available literature relevant to this study highlights a few important 

points. CWD is an important component of forests that has wide-ranging small- 

and large-scale impacts. Aerial photos provide a relatively inexpensive avenue 

for using remote sensing to measure CWD, especially relative to LiDAR and field 

studies. Other studies have attempted to use different aerial imagery types to 

study forest and snag dynamics, and their methods provide important 

background on the efficacy of different remote sensing techniques. These 

methods have exposed inaccuracies in estimating snag heights and the need for 

use of correction coefficients to better estimate height. 
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Materials and Methods 

This research was conducted using two sites in the ponderosa pine 

forests of northern Arizona. The areas studied are located within the Pumpkin fire 

(2000) area on the Kaibab and Coconino National Forests north of Kendrick 

Peak, as shown in Figure 1. I relied on two plots that were surveyed by 

Chambers and Mast (2005) for testing the approaches developed by this study 

and assessing accuracy. These plots are located within high-severity burn 

patches with >95% tree mortality. Elevation ranges from 2300 to 2550 m 

generally flat surfaces ( <10% slope) and the plots consist of 50 x 200 m (1 ha) 

rectangles individually oriented to encompass as many high-severity patches as 

possible. 

The aerial imagery source materials consist of digital scans of existing true 

color 1:12,000 United States Department of Agriculture (USDA) aerial photos 

scanned by the Aerial Photography Field Office (APFO) at 12 microns to give a 

resolution of approximately 0.18 meters per pixel.  Of the three 1 ha Pumpkin fire 

plots studied by Chambers and Mast during June 2001, only two are covered by 

the high-resolution imagery taken after the Pumpkin fire, which was captured on 

August 25, 2001. Each plot is shown on two separate overlapping photos, 

resulting in four available scenes for study. To perform the feature extraction, I 

created a model using Textron System's Feature Analyst software for ESRI's 

ArcGIS. For the remainder of the analysis I used ArcGIS Desktop Advanced 10.1, 

including the Spatial Analyst extension developed also by ESRI and the Python 

2.7 integrated development environment. 

I based the delineation of snags around detecting their shadow across the 
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ground surface. With vertical air photos of high-severity burned ponderosa pine 

stands, many snags appear as little more than a single point on the imagery due 

to the straightness of the trunks and the lack of large branches while their 

shadows appear as distinct dark lines across the ground.  

 

Image Preparation 

 After obtaining images from the APFO, pre-processing was required. The 

high-resolution scans came as .TIFF files that were >2 GBs each. I first cropped 

the images to include only the area immediately surrounding the study sites. I 

then georeferenced the images using five to six control points for each plot which 

were obtained in the field using GPS. Control points consisted of distinct points 

identifiable on the ground and in the imagery such as metal water tanks, road 

intersections, culverts, and large, distinct, individual live trees. I used a spline or 

rubbersheet georeferencing function because global accuracy was largely 

irrelevant for this study while local accuracy was paramount. Finally, using GPS 

and bearing data from Chambers and Mast (2005), I reconstructed the plot areas 

in a GIS and overlaid them on the imagery.  

 

Feature Analyst Method 

 Using the feature extraction tool Feature Analyst, I developed a learning 

algorithm to automatically resolve snag features from the plots. After testing 229 

different parameter configurations a simple double-pass learning method was 

deemed the most effective algorithm because it had the least amount of type-II 

error (error where areas lacking snags were identified as snag polygons) and 
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was visually validated as being the best. The algorithm worked by creating a 

training sample of snag features and using a simple feature extraction run twice 

over the scene while employing a minimum shape size and applying a smoothing 

filter. To improve processing time the extraction extent was kept to the plot area 

and produced run times of four to five minutes for this step. This configuration 

was saved as an exportable accelerated feature extraction (.afe) file that was 

subsequently used on the other scenes using the Feature Analyst software, to 

create a polygon shapefile showing snag features, as shown in Figure 2. 

 

Edge Detection Method 

To give perspective on the feature extraction method, I employed a 

simpler method of using edge detection on each of the four scenes. To do this, I 

rotated each image (using a degree input so they could be exactly rotated back 

after) so the snag shadows were vertically oriented. A gradient edge detection 

function was performed using ArcGIS Image Analysis followed by a majority filter, 

which reclassifies pixels based on what the majority of pixels in its neighborhood 

are, to reduce noise. The kernel size for the edge detection was 3x3 pixels, as 

shown in Figure 3. Next I used binary reclassification using visual evidence of 

natural breaks in the scene between snag and non-snag areas. The snag zones 

were expanded by one pixel in each direction to fill out patchy areas, the scene 

was rotated back to its original orientation, and the snag raster zones were then 

converted to polygons that, like in the Feature Analyst method, represent the 

location and length of each snag’s shadow. Once this method was developed I 

was able to complete this process for a single scene in approximately seven to 
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ten minutes. 

Manual Digitization Method 

In this method, I digitized the shadows of snags in each of the four scenes 

by drawing polylines in ArcGIS in a new shapefile on top of the existing 

georeferenced imagery. Snag were digitized as lines representing the center of a 

snag shadow from shadow base to peak. This manual drawing automatically 

includes the lengths of each shadow in the shapefile geometry. A new tool was 

also constructed using ArcObjects for Visual Basic to assist in the rapid 

digitization of snags while assigning each snag to a decay class. However, 

measuring decay class was left outside the scope of the final analysis due to the 

difficulties in accurately establishing it using the available imagery. Using the 

streamlined workflow it would take 20-25 minutes to digitize all the snag features 

(259 to 285 snags) visible in a given plot. 

 

Complex Polygons 

 In many cases, especially areas with a high density of snags, large 

complex polygons where many parallel snag features are joined by short bridges 

of non-snag features were created by the automated methods, as exemplified in 

Figure 4. These overlaps were caused by overlap in the shadows of large 

branches on the snags, exacerbated by mixed pixels. This posed a serious 

problem because there was not an easy way to automate the breaking of such 

complex polygons into separate features. With simple polygons representing a 

single snag, the longest midline can be converted to a polyline to estimate the 

length for each feature, but this was not possible with large, complex polygons. 
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Fortunately, I developed a novel solution to this problem that is one of the more 

exciting outcomes of this research. 

 

Fishnet Snag Detection 

 To overcome this hurdle of complex snag polygon shapes, a fishnet is 

constructed. A fishnet is a regular grid of polylines, in this case a dense array of 

columns but only one row, where the column spacing is half that of the average 

snag polygon width. The fishnet is rotated by the user to align columns to be 

parallel with the snag shadows, with the angle of rotation determining the sun's 

azimuth, and laid over the detected snag area polygons. To facilitate these steps, 

I wrote a Python script packaged as an ArcGIS toolbox tool to automate the 

delineation of snag features from all polygons, including the large complex ones, 

and to calculate the height of each snag (Appendix B and C). The script consists 

of an identity tool that attaches the polygon IDs to the fishnet lines and then 

iterates polygon by polygon, finding the longest line in each polygon and 

outputting these as snag polylines. In complex polygons, where it is clear to the 

human eye that the polygon consists of multiple snag features, it flags all the 

local spatial maxima (in terms of length) of the parallel fishnet lines in a polygon, 

as shown in Figure 5. After selecting all the flagged local maxima lines, the script 

exports them to a new shapefile showing the position of all the snag shadows 

detected with noise removed (i.e., lines shorter than a user specified minimum 

length, and lines that cannot be snags because they are simply too short even 

though they are local maxima inside their respective polygons). 
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Height Calculation 

 With lines representing the shadow of each snag detected, the script then 

calculates an estimated height of each snag. This involves using the US Naval 

Observatory's Sun Altitude/Azimuth calculator website to determine the angle of 

the sun's elevation, based on the previously derived azimuth of the sun, the 

location (latitude and longitude) of the scene, and the date on which the imagery 

was captured (US Naval Observatory 2015). The angle of the sun is used as a 

script input and a simple trigonometric function is employed to calculate the 

height of each snag in the attribute table: 

𝐻 = 𝐿 ∗ 𝑇𝑎𝑛(𝑎) 

Where H is the height of the snags, L is the length of the shadow, and 𝑎 is the 

angle of the sun’s elevation in degrees. Following this, a final snag count and 

snag height statistics are available for the scene by viewing the attribute table 

summary statistics. 

 

Adjustment 

 Similarly to Bütler and Schlaepfer (2004). I derived a correction coefficient 

by comparing the automated height measurements to the field survey data. It 

was readily apparent that all methods were underestimating the height of the 

snags so that many features (as much as 75% of possible snag lines in some 

scenes) were below the minimum height, disqualifying them from being counted. 

To alleviate this compounding problem, I performed a height adjustment protocol 

on the outputs from the Feature Analyst and edge detection methods. However, I 

did not adjust the height of the digitized snags because the number of snags 
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detected using this method was largely accurate and without short lines that were 

unlikely to be snags. Using field survey data from Chambers and Mast (2005), I 

found the minimum height of the surveyed snags for each plot after removing 

outliers (height outliers defined here as snags shorter than 1.5 inter-quartile 

ranges <the first quartile). In the initial output, the average height of all detected 

snags (n) larger than the minimum measured height was normalized to the 

average height of the largest n snags in the field survey data. I used this system 

because it was presumed the larger snags were detected with the greatest 

accuracy because they would have longer shadows and a larger basal area, so 

there would be fewer shadows encroaching and overlapping it.  

To better explain this system the following example from the Feature 

Analyst method is described. Plot 1 had a minimum (outlier removed – values 

<1.5 interquartile ranges below quartile 1) field-surveyed height of 8.35 m. The 

remotely sensed data from scene A/Plot 1 initially had 40 snags 8.35 m or higher; 

with an average height of 10.37 m. The largest 40 snags (of 325 in total) in the 

field survey data have an average height of 17.57 m. Thus, a height adjustment 

factor of 1.69 (17.57/10.37 =1.69) was used on all the snag features in scene A, 

creating a new adjusted height for each snag in the attribute table, after which 

176 snag features were >the minimum height threshold of 8.35 m. 
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Discussion 

Count and Height Accuracy 

After the initial analysis was complete, extracted snag data was compared 

to the field survey data from Chambers and Mast (2005), shown in Table 1. 

Automated snag detection ranged from 117 to 237 out of 328 field measured 

snags for Plot 1B and 125 to 176 of 283 snags for Plot 2B. Accuracy for each 

scene and method as a percentage of the field survey data is shown in Table 2. 

The average accuracy of each method is shown in Table 3. After adjusting the 

height of each snag, average heights estimated from the automated techniques 

were 2 to 12% >the field surveyed height and only detected 46 to 56% of the 

snags in each scene. Both the Feature Analyst and edge detection method 

grossly underestimated the number of snags in each scene but on average were 

relatively accurate at estimating height when using an adjustment, capturing 93 

to 124% of the true height. 

 

Discrete Matching and Manual Digitization Accuracy 

One more assessment was devised to test the accuracy of the snag 

height data estimated using the Feature Analyst and Edge detection methods on 

a one-to-one snag basis. Using positional data from Chambers and Mast’s 

(2005) field survey, a point shapefile was created showing the location of each 

snag. Due to error introduced from imprecise location information, plot 

coordinates, imagery georeferencing, and general inaccuracy of the snag 

detection methods, it was impossible to compare output snags to their field 

counterparts on a one-to-one basis across entire scenes. However, some snag 
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polygons were spatially isolated and distinct in size or shape that they were 

visually identified as the same features as their field counterparts with a high 

degree of certainty. I identified 10 such pairs in each Feature Analyst and Edge 

Detection scene and the average height was compared to field data with results, 

shown in Table 4. On average, the unadjusted height was only slightly less 

accurate than the adjusted height, with the adjusted height overestimating the 

true height while the unadjusted height underestimated it. Furthermore, the Edge 

Detection method generally measured snag pairs 4-7% shorter than the Feature 

Analyst method, with only the discrete matching in scene D measuring more than 

the Feature Analyst derived heights. The overestimation of the adjusted snag 

heights makes sense here because many of the snags that were isolated enough 

for discrete matching often were larger than most snags in the scene, biasing the 

accuracy of this assessment towards larger, isolated snags.   

As shown in Table 3, manual digitization provides a high degree of 

accuracy (84-95%) for estimating the total number of snags in a scene, but only 

moderately accurate and highly variable height estimates (46-81%). 

 

Limitations 

While this research represents a significant first step for using remote 

sensing methods to inventory snags in post-fire settings, more work is needed to 

improve the accuracy and identify the limitations of remote surveys.   

Broad-scale imagery (1:12,000 or greater) is necessary for resolving 

ponderosa pine snag features when using true color air photos. It was originally 

intended that this research would have a broader scope by using data from more 
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plots on multiple different fires, but the lack of suitable imagery precluded this. I 

also experimented with 12 micron scans of finer-scale 1:20,000 color air photos, 

but deemed them too coarse to be able to resolve individual snag features 

without resulting in a very low degree of accuracy. Higher-resolution scans are 

possible (e.g. 7-10 microns); however, this currently requires even more 

specialized photogrammetric scanners and begins to approach the grain size of 

the original film (Schiefer and Gilbert, 2007). This research is applicable to 

natively digital aerial photos that have pixel resolutions of 0.2 m or higher or 

scans that produce a similar nominal resolution. 

The methods described here need to be tested on a greater number of 

post-fire sites. These should encompass sites of various forest type, maturity, 

density, burn severity, slope, and locations. Accuracy needs to be categorically 

tested for each snag class to determine how accurate these methods estimate 

different size snags. The process for calculating height from shadows needs to 

be compared with results from imagery taken at different times of the day and 

with a broader range of sun elevation angles. 

The algorithm used by the Feature Analyst method, while promising, is 

limited in multiple ways. One limitation was with the source imagery, in addition to 

true color imagery, color-infrared images could greatly increase the accuracy in 

distinguishing snag features, especially when the ground cover is live vegetation. 

Furthermore, high resolution imagery would also make features clearer and more 

easily delineated. 

 The algorithm used by the feature analyst is also limited by the learning 

process. I developed the algorithm using a finite number of training sites. With 
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such an approach, it is difficult to capture the entire range of spectral signatures 

and more importantly, change in spectral signature across all shapes and sizes 

of target features. A future solution to this problem could entail including a 

machine learning algorithm that would build on its knowledge of how to recognize 

target features as it continues to be used. Another problem was that the 

algorithm was not able to use the imagery of the actual tree stem in conjunction 

with its shadow to improve feature detection. For example, in scene B, the site is 

far enough from the nadir of the air photo that standing snags appear to lean to 

the right, and in some cases these stems are very linearly visible, and not just 

small dots or very small polygons as they would appear if the camera lens was 

directly overhead, as shown in Figure 6. This created a constant angle of 

intersection between snags and their shadows across the scene. Due to overlap 

of features this was not always visible but could have been useful in cases where 

it was prominently displayed. Another problem with the algorithm was the inability 

to detect small, narrow features. In Figure 6 you can also clearly see individual 

snag shadows that were not detected, likely because they were too thin. Another 

problem was the combining of closely spaced features where two shadows were 

adjacent to each other, they were likely to be counted as one wide feature 

instead of two narrow side by side features. It might be possible to mitigate this 

by setting a maximum width for features, but it would be more useful to simply 

have higher resolution imagery. 

One more issue is the difference in measurements between the two 

scenes for each plot, A vs B for plot 1 and C vs D for plot 2. The most likely 

reason for this is the difference in the position of each scene in their respective 



22 

photographs relative to the nadir of the image. This can cause snag trunks to 

appear to lean in different directions even though their shadows were consistent 

among between images. This can cause more or less overlap of snag polygon 

features, which changes the effectiveness of the algorithm. 

The devised fishnet method for resolving individual snags from complex 

polygon features was feasible with horizontally bridged-together features, but is 

ineffective at separating snags whose shadows are vertically aligned (i.e. end to 

end) inside one polygon. A new approach at resolving this issue would be 

needed, perhaps by setting a relative length threshold for keeping two features 

on one line when appropriate  

 

Advantages 

 The main advantage of the methods tested in this research is the 

substantial savings in time and capital required to create estimates of post-fire 

snag data. Furthermore, this method is scalable and can be used to gain precise 

estimates on snags at the landscape level. 

 The novel fishnet delineation method allowed for delineating snags from 

complex polygons within high-density areas. By finding all the local maxima, 

instead of a fixed number of the longest lines in each shape, there was no 

theoretical limit to how complex a polygon could be and still resolve snags. While 

this was an important breakthrough, it was imperfect and more development is 

needed to resolve issues for vertical alignment of snag shadows.   

 

Implications 
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Clearly, remote methods for measuring forest structure dynamics, including post-

fire snag data, is an important field for land managers to take interest in. With 

improvements in accuracy and broad scale testing of these methods, they can 

provide an inexpensive new tool for land managers and researchers to quickly 

and efficiently measure fire impacts. In an era of budgetary concerns and limits 

on human resources, remote sensing has the potential to significantly decrease 

data collection costs. Furthermore, remote sensing, and especially automated 

techniques, provides an important opportunity for greatly expanding the scale 

from which detailed forest data can be obtained, from the plot-level to the 

landscape-scale. As discussed earlier, LIDAR is another possible avenue for 

collecting such data (Martinuzzi et al. 2009), but traditional aerial photos are 

much more ubiquitous, less costly to obtain, and require less expert knowledge 

to analyze. 
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Conclusion 

 Remote methods for inventorying post-fire snags can provide a way of 

estimating snag density and height in post-fire environments. The results among 

the different methods tested varied in accuracy but provide a strong starting point 

for investigating the use of aerial photos for creating estimates of number and 

height of snags in an area. These methods clearly need refinement and further, 

broader testing, but they have shown to provide promising results for use in the 

area in which they were developed. At the very least, this research is ready to 

provide snag number and height estimations that accurately predict snag density 

and height within the correct order of magnitude, which will be useful for land 

managers. Height measurements, in particular, and especially for large snags in 

open areas, provide a very promising avenue for future research uses, as they 

captured between 70 and 102% of the average field measured height for the 

plots in this study, even before any adjustments were made. 

 Furthermore, this research demonstrates how complex polygons 

encompassing multiple snags can be systematically manipulated to resolve 

individual snag features using the novel fishnet approach; however, this 

technique also needs further refinement and testing to improve it to a level where 

it is accurate enough for widespread adoption. The open-source fishnet 

automated script will additionally allow a wider body of researchers, including 

those who are less GIS savvy, a new user friendly tool for their use and a system 

that can be easily modified and improved upon.  

 Snags are an important, ecologically relevant component of forest 

diversity. Because current methods for estimating snag volumes require 
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expensive, labor- and time-intensive ground surveys, new remote survey 

methods can help bridge the information gap, especially when information is 

rapidly needed after large disturbances such as wildfires. This research can lay a 

foundation for more refined remote sensing methods to become a common 

measurement vehicle for land managers, researchers, and forest stakeholders.  
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Figures 

Figure 1. Study Site Location Map with plots and Pumpkin Fire. 

 

 

Figure 2. Feature Analyst snag polygons, scene A, plot 1. The black bounding 
box is the boundary of plot 1; the green shapes are the detected snag polygons. 
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Figure 3. Gradient kernel configuration for Edge Detection method. This is the 
default edge detection kernel used by ArcGIS. 

 

 

Figure 4. Complex snag area polygon, highlighted in blue outline, scene D, plot 
2. This shows one polygon on the edge of the plot (also blue line down the left 
side) that is clearly multiple different snags which are connected via short 
horizontal bridges, necessitating a way to break apart this polygon. 

 

  

1 0 -1

2 0 -2

1 0 -1
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Figure 5. Complex polygon (light green) with snag features detected from fishnet 
local maxima (red lines). The rest of the detected polygons in the scene are 
shown as dark green polygons and the black line is the plot boundary. This is the 
same polygon from Figure 4, but here it shows the local maxima considered to 
be snag features. 
 

 
  



32 

Figure 6. An example in scene B of how many snags (shown here as blue 
polygons) were not incorporated into the feature detection and how the algorithm 
did not detect narrow shadow. In the middle, marked by red arrows, there are two 
examples of snag shadows that were not detected. On the right side of the image 
there is a prominent example of the actual snag detected in one piece with its 
shadow 
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Tables 

Table 1. Results from Feature Analyst (_FX), Edge Detection (_ED), and 
Digitization Methods (_DIG). The A, B, C, and D prefixes indicate which scene 
each result is from. This table shows how many snags taller than the minimum 
height, as found via the field survey, were originally detected using each method 
and their average height. By comparing predicted heights to the field height data, 
an adjustment was performed that increased the average height for each 
category and thus the number of qualifying snag features. Each plot is 1 ha in 
size, thus the number of snags is the same as density of snags/ha.  

 
 

Table 2. . Accuracy of each method as a percentage of field data (*digitization 
results unadjusted) from Feature Analyst (_FX), Edge Detection (_ED), and 
Digitization Methods (_DIG). The A, B, C, and D prefixes indicate which scene 
each result is from. 

 

  

Plot

Scene A_FX B_FX A_ED B_ED A_DIG B_DIG Ground

UnAdj. Snags 40 51 135 141 285 277 328

UnAdj. Avg. Ht 10.4 11.3 11.3 18.4 10.7 10.8 13.3

Adj. Snags 176 117 237 141 X X X

Adj. Avg. Ht 12.3 13.4 13.9 16.5 X X X

Adj.Factor 1.69 1.53 1.47 0.90 X X X

Plot

Scene C_FX D_FX C_ED D_ED C_DIG D_DIG Ground

UnAdj. Snags 103 79 76 192 259 267 283

UnAdj. Avg. Ht 12.6 10.8 11.1 18.3 6.9 5.9 12.7

Adj.Snags 125 147 132 176 X X X

Adj. Avg. Ht 14.1 13.2 13.4 14.3 X X X

Adj.Factor 1.20 1.45 1.43 0.75 X X X

P1B

P2B

Plot P1B

Method A_FX B_FX A_ED B_ED A_DIG* B_DIG*

Adj. Count 53.7% 35.7% 72.3% 43.0% 86.9% 84.5%

Adj. Height 92.6% 101.1% 104.5% 124.3% 80.8% 81.3%

Plot P2B

Method C_FX D_FX C_ED D_ED C_DIG* D_DIG*

Adj. Count 44.2% 51.9% 46.6% 62.2% 91.5% 94.3%

Adj. Height 110.7% 103.7% 105.7% 112.7% 54.1% 46.4%



34 

Table 3. Average accuracy by method (*digitization results unadjusted) as a 
percentage of field survey data for Feature Analyst (FX), Edge Detection (ED), 
and Digitization Methods (DIG). 

 

 

Table 4. Average of one-to-one accuracy assessment from a discretely matched 
sample of 10 pairs of snags from the Feature Analyst derived height data, as a 
percentage of field data for Feature Analyst (_FX) and Edge Detection (_ED). 
The A, B, C, and D prefixes indicate which scene each result is from. 
 

 
 
  

Method FX ED DIG*

Adj. Count 46.4% 56.0% 89.3%

Adj. Height 102.0% 111.8% 65.6%

Plot

Scene A_FX A_ED B_FX B_ED

UnAdj. Height 65.8% 61.7% 77.6% 75.8%

Adj.Height 111.2% 105.5% 118.8% 112.0%

Plot

Scene C_FX C_ED D_FX D_ED

UnAdj. Height 101.8% 94.1% 80.0% 84.6%

Adj.Height 122.1% 118.4% 116.0% 121.1%

P2B

P1B
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Appendices 

Appendix A. Photos of each scene 

Scene A_FX. Black lines showing fishnet derived snags from local maxima and 
yellow polygons are snag polygons, using the feature extraction method on 
Scene A: 

 
 
Scene A_ED. Black lines showing fishnet derived snags from local maxima and 
green polygons are snag polygons, using the Edge Detection method on scene 
A: 

 
 
Scene B_FX. Black lines showing fishnet derived snags from local maxima and 
yellow polygons are snag polygons, using the feature extraction method on 
Scene B: 
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Scene B_ED. Black lines showing fishnet derived snags from local maxima and 
green polygons are snag polygons, using the edge detection method on Scene 
B: 

 
 
Scene C_FX. Black lines showing fishnet derived snags from local maxima and 
yellow polygons are snag polygons, using the feature extraction method on 
Scene C: 
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Scene C_ED. Black lines showing fishnet derived snags from local maxima and 
yellow polygons are snag polygons, using the edge detection method on scene 
C: 

 
 
Scene D_FX. Black lines showing fishnet derived snags from local maxima and 
yellow polygons are snag polygons, using the feature extraction method on 



38 

Scene D: 

 
 
Scene D_ED. Black lines showing fishnet derived snags from local maxima and 
yellow polygons are snag polygons, using edge detection method on Scene D: 
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Scene A original aerial photo with Plot 1 (40° and 1200 meters from nadir) shown 

in the black box:
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Scene B original aerial photo with Plot 1 (90° and 600 meters from nadir) shown 

in the black box:
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Scene C original aerial photo with Plot 2 (25° and 1000 meters from nadir) shown 

in the black box:
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Scene D original aerial photo with Plot 2 (100° and 400 meters from nadir) shown 

in the black box:
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Appendix B. Python Script  

local_maxima_snag_script.py 

1. ###This script finds the local maxima of fishnet lines by length that inter-
sect polygons   

2. ###Written by Kevin Kent, Northern Arizona University   
3. ###Created to be used with "Find Longest Snags" script in Snag_Detec-

tor.tbx ArcGIS Toolbox   
4. ###written for python 2.7   
5.    
6. import os   
7. import arcpy   
8. import numpy as numpy   
9. import math   
10.    
11. # Set the inputs for workspace, polygon fc/shapefile, fishnet, and projection   
12. arcpy.env.workspace = arcpy.GetParameterAsText(0)   
13. polygon_input = arcpy.GetParameterAsText(1)   
14. fishnet_input = arcpy.GetParameterAsText(2)   
15. roi = arcpy.GetParameterAsText(3)   
16. projection = arcpy.GetParameterAsText(4)   
17. angle = float(arcpy.GetParameterAsText(5))   
18. min_height = float(arcpy.GetParameterAsText(6))   
19.    
20. #set workspace variable   
21. workspace = arcpy.env.workspace   
22.    
23. #allow overwriting    
24. arcpy.env.overwriteOutput = True   
25.    
26. #create scratch folder   
27. arcpy.CreateFolder_management(workspace, "intermediate_outputs")   
28.    
29. #reset new scratch folder to current workspace environment   
30. arcpy.env.workspace = "intermediate_outputs"   
31. #set scratch variable   
32. scratch = arcpy.env.workspace   
33.    
34. #copy/rename input polygon and fishnet shapefile so attribute head-

ings will be predictable   
35.    
36. arcpy.CopyFeatures_management(polygon_input, "snag_polys.shp")   
37. arcpy.CopyFeatures_management(fishnet_input, "fishnet_copy.shp")   
38.    
39. #clip snag_polys and fishnet_copy shapefiles to ROI   
40. arcpy.Clip_analysis("snag_polys.shp", roi, "snag_polys_clip.shp")   
41. arcpy.Clip_analysis("fishnet_copy.shp", roi, "fishnet_copy_clip.shp")   
42.    
43. #dissolve snag_polys_clip to get rid of any overlapping features gener-

ated by afe model   
44. arcpy.Dissolve_manage-

ment("snag_polys_clip.shp", "snag_polys_clip_diss", "", "", "SINGLE_PART")   
45.    
46. #set these copied/dissolved shapefiles as variables   
47. snag_polys = "snag_polys_clip_diss.shp"   
48. fishnet_copy = "fishnet_copy_clip.shp"   
49.    
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50. #run Identity on fishent ith polygons as identity features saving out-
put as new shapefile   

51. arcpy.Identity_analysis(fishnet_copy, snag_polys, "identity_output.shp")   
52.    
53. #select lines that cross polygons and make new shapefile   
54. arcpy.MakeFeatureLayer_management("identity_out-

put.shp", "lyr1")                             
55. arcpy.SelectLayerByAttribute_management("lyr1", "NEW_SELEC-

TION", ' "FID_snag_p" <> -1 ')   
56. arcpy.CopyFeatures_management("lyr1", "lines_on_polygons.shp")   
57.    
58. #make multipart lines into singlepart   
59. arcpy.MultipartToSinglepart_management("lines_on_polygons.shp", "lines_on_poly-

gons_singlepart.shp")   
60.    
61. #project to Coordinate system using meters   
62. arcpy.Project_management("lines_on_polygons_singlepart.shp", "lines_on_poly-

gons_singlepart_projected.shp", projection)   
63.    
64. #add length field   
65. arcpy.AddField_management("lines_on_polygons_singlepart_pro-

jected.shp", "LENGTH", "DOUBLE", 10, 9)   
66.    
67. #calculate length (in meters, unit of projection in this case)   
68. with arcpy.da.UpdateCursor("lines_on_polygons_singlepart_pro-

jected.shp", ("LENGTH", "SHAPE@LENGTH")) as cursor1:   
69.     for row in cursor1:   
70.         row[0] = row[1]   
71.         cursor1.updateRow(row)   
72.    
73. #delete lines that are less than desired height/length (to improve pro-

cessing). First convert height to length   
74. min_length = min_height/math.tan(math.radians(angle))   
75.            
76. with arcpy.da.UpdateCursor("lines_on_polygons_singlepart_pro-

jected.shp", "LENGTH") as cursor:   
77.     for row in cursor:   
78.         if row[0] < min_length:   
79.             cursor.deleteRow()   
80.    
81. #summary statistics to find longest segments for each fishnet line, by polygon   
82. arcpy.Statistics_analysis("lines_on_polygons_singlepart_projected.shp", "long-

est_parts", [["LENGTH", "MAX"]], ("FID_snag_p", "FID_fishne"))   
83.    
84. #sort fields by FID_of_polygons and then by FID of Fishnet   
85. #sorting with ArcGIS INFO tables has a BUG and returns error, so con-

vert to mdb table, sort, and convert back.   
86. #changed table to .gdb on 1/27/15 (5 instances)   
87. arcpy.CreatePersonalGDB_management(scratch, "table.mdb")   
88. arcpy.TableToTable_conversion("longest_parts", "table.mdb", "longest1")   
89. sort_fields = [["FID_SNAG_P", "ASCENDING"], ["FID_FISHNE", "ASCENDING"]]   
90. arcpy.Sort_management("table.mdb/longest1", "table.mdb/long_s", sort_fields)   
91. arcpy.TableToTable_conversion("table.mdb/long_s", scratch, "longest.dbf")   
92.    
93. ##################################   
94.    
95. #Part 2: parsing the lines to find the local maxima fishnet subsets in each pol-

ygon   
96.    
97. #set inputs for part 2 and output location   
98. input_shapefile = "lines_on_polygons_singlepart_pro-

jected.shp" #"D:\Kevin_Kent_imagery\g_p1b_12a_georftosnags\script_part\interme-
diate\lines_on_polygons_singlepart_projected.shp"   
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99. #the following line was changed from "longest" to "longest.dbf" on 1/27/15   
100. #because 10.2 does not leave it as INFO style table in 2nd TabletoTa-

ble conversion above   
101. input = "longest.dbf"    
102. output = workspace + "//final_output.shp"    
103.    
104. #count number of rows in input table   
105. result = arcpy.GetCount_management(input)   
106. count = int(result.getOutput(0))   
107.    
108. #create an array with as many rows as input table. values are zeros.    
109. arr1 = numpy.zeros(shape=(count, 4))   
110.    
111. #use search cursor to fill indexable array   
112. i = 0   
113. #Column 0 changed to "OID" from "Rowid" (as well as making long-

est a .dbf instead of INFO) to accomodate 10.2   
114. with arcpy.da.SearchCursor(in-

put, ["OID", "FID_SNAG_P", "MAX_LENGTH"]) as cursor:   
115.     for row in cursor:   
116.         arr1[i,0] = row[0]   
117.         arr1[i,1] = row[1]   
118.         arr1[i,2] = row[2]   
119.         #4th column is left as zeroes for flagging   
120.         i +=1 #increments i by 1 with each row   
121.    
122.    
123. #PARSING to find local maxima fishnet lines in each polygon:          
124. r = 0   
125. #special case for first row   
126. while r < 1:   
127.        
128.     #checks first row to see if it is from same polygon as next row   
129.     if arr1[r,1] != arr1[r+1,1]:   
130.         #if different, flags and increments counter   
131.         arr1[r,3] = 1      
132.    
133.     #if from same poly-

gon, check to see if it has a longer max_length than next   
134.     elif arr1[r,2] > arr1[r+1,2]:   
135.         #if longer, flags and increments counter   
136.         arr1[r,3] = 1   
137.            
138.     r +=1   
139.    
140. #procedure for all but first and last row   
141. while r < (count-1):   
142.    
143.     #flaging procedure for multiple fishnet lines in one polygon   
144.     if arr1[r,1] == arr1[r-1,1] and arr1[r,1] == arr1[r+1,1]:   
145.         if arr1[r,2] > arr1[r-1,2] and arr1[r,2] >  arr1[r+1,2]:   
146.             arr1[r,3] = 1   
147.            
148.     #flagging procedure for first fishnet line in a polygon   
149.     elif arr1[r,1] == arr1[r-1,1] and arr1[r,1] != arr1[r+1,1]:   
150.         if arr1[r,2] > arr1[r-1,2]:   
151.             arr1[r,3] = 1   
152.                
153.     #flagging procedure for last fishnet line in a polygon   
154.     elif arr1[r,1] != arr1[r-1,1] and arr1[r,1] == arr1[r+1,1]:   
155.         if arr1[r,2] > arr1[r+1,2]:   
156.             arr1[r,3] = 1   
157.    
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158.     #flagging procedure for polygon with only one fishnet line   
159.     elif arr1[r,1] != arr1[r-1,1] and arr1[r,1] != arr1[r+1,1]:   
160.         arr1[r,3] = 1   
161.    
162.     #increment counter   
163.     r +=1   
164.       
165. #procedure for last row      
166. if arr1[r,1] == arr1[r-1,1]:   
167.         if arr1[r,2] > arr1[r-1,2]:   
168.             arr1[r,3] = 1   
169.    
170. #add flag field to input   
171. arcpy.AddField_management(input, "FLAG", "INTEGER", 1)   
172.    
173. #run update cursor to change "FLAG" attribute to value in third col-

umn of array   
174. e=0   
175. with arcpy.da.UpdateCursor(input, "FLAG") as cursor:   
176.     for row in cursor:   
177.         row[0] = arr1[e,3]   
178.         e += 1   
179.         cursor.updateRow(row)   
180.    
181. #delete unflagged rows, should speed up joining time.    
182. with arcpy.da.UpdateCursor(input, "FLAG") as cursor:   
183.     for row in cursor:   
184.         if row[0] == 0:   
185.             cursor.deleteRow()   
186.                
187.    
188. #join gets bogged down if too many fishnet lines, segments, etc          
189. #join table to shapefile   
190. arcpy.JoinField_management(input_shapefile, "length", in-

put, "MAX_LENGTH", "FLAG")   
191.    
192. #select flagged features and export to new shapefile   
193. arcpy.MakeFeatureLayer_management(input_shape-

file, "lyr")                             
194. arcpy.SelectLayerByAttribute_management("lyr", "NEW_SELEC-

TION", ' "FLAG" = 1 ')   
195. arcpy.CopyFeatures_management("lyr", output)   
196.    
197.    
198. #add field to ouput for height calculation   
199. arcpy.AddField_management(output, "SNAG_HT", "DOUBLE", 10, 9)   
200.    
201. #calculate height of remaining lines using equation Tan(an-

gle) * length = height   
202. with arcpy.da.UpdateCursor(output, ["LENGTH", "SNAG_HT"]) as cursor:   
203.     for row in cursor:   
204.         row[1] = math.tan(math.radians(angle)) * row[0]   
205.         cursor.updateRow(row)   
206.    
207.        
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Appendix C Snag Detector Tool Directions 

Snag_Detector.tbx 

Directions for Using .AFE Model for Snag Feature Extraction and for Using 

Script to Resolve Individual Snags and Adjust Height 

This script was originally created for ArcGIS 10.1 and Python 2.7 

 

Using .AFE Model to Resolve Snag Polygons: 

1. Prepare your image(s) by georeferencing 

2. Construct Region of Interest (ROI)  polygon 

3. Clip image to ROI or slightly larger 

4. Using Feature Analyst in ArcGIS, run the Batch Processing module with the 

provided .AFE model and your image(s). 

5. Clip output by mask if desired/necessary 

6. Save polygon outputs to desired locations 

 

Using the Script to Resolve Snag Polylines: 

This script provides a novel approach for delineating snag shadow locations from 

a shapefile with simple (1 shadow - 1 shape) and complex (many shadows – 1 

shape) polygons by finding the local maximum lengths of lines running the length 

of each polygon shape. 

 

This can be done using the results from any desired method that outputs snag 

shadow features as polygons. 
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1. Copy the polygon and ROI shapefiles to a working folder 

 

2. Construct a fishnet: 

 A. Buffer your ROI by a distance = (.5) * ((longest side of ROI) – (shortest 

side of ROI)) 

 B. In the Data Mangement Toolbox, Feature Class Folder, select Create 

Fishnet. 

 C. Set the output. 

 D. Set the template extent to the buffered ROI shapefiles. 

 E. Set the number of Columns to that so the output will have line spacings 

equal to half that of  the width of the snag polygons (this may take some trial and 

error, spacing was 0.2m in original method utilizing 1:12000 imagery) 

 F. Use the Editing toolbar edit the fishnet shapefile. 

 G. Select all the features in the fishnet shapefile and click the rotate 

button. 

 H. Do not use the cursor to rotate. Click the “a” key and a window will 

open prompting a rotation angle 

 I. Rotate until the fishnet lines are in alignment with the directions of the 

shadows. For example, if the image was taken at 9:00 AM (non-Daylight Savings 

Time) on the spring equinox, you would expect the angle of rotation to be around 

120 degrees (give or take a few depending on the positioning in the time zone). 

Record the final angle of rotation (azimuth). 

 J. Save edits. 
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3. Make sure the Custom Find_Snags Toolbox and its accompanying python 

(.py) script, local_maxima_snag_scipt, is saved to a local directory. 

4. Add this Toolbox to the default list of Toolboxes in ArcGIS. 

5. Edit the Toolbox so the source information directs to the downloaded python 

script. 

 

6. Go to the US Naval Observatory's Sun or Moon Altitude/Azimuth Table 

(http://aa.usno.navy.mil/data/docs/AltAz.php) and using Form B, select 

measurements for the sun, enter the year and date the source imagery was 

taken, as well as it's latitude and longitude, and set the tabular interval to 1 

minute. (You can set the time zone if you like but it is not necessary). 

7. Find the altitude (angle of elevation) that corresponds to the azimuth (angle of 

rotation) that was recorded in step 2.I. Record this number. 

 

8. Finally Run the Find_Longest_Snags scripting tool in ArcGIS 

 A. Set the inputs for the working folder, the snag polygon shapefile, the 

rotated fishnet shapefile, the ROI, and the projection file (you might need to find 

the correct projection file in ArcCatalog and save it to the working folder 

beforehand). 

 B. Set the angle to the altitude angle derived in step 7. 

C. Use the slider to pick a (unadjusted) minimum height for the output 

snags. A higher minimum will speed processing time by eliminating short lines 

that are most likely noise. 
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9. When script finishes, the working folder will contain a shapefile called 

final_output showing polylines of snag shadow locations with attributes for each 

feature estimating the height of each snag. 

 

10. (Optional). If you wish to perform a height adjustment, pen the attribute table 

of “final_output” and click “Add Field.” Create a new field as type: Double and set 

the precision and accuracy to the desired length. Right click on the new field and 

open “Field Calculator.” In the code box write: 

[SNAG_HT] * Adjustment_factor 

The adjustment factor is a number of your choosing; this number can be inferred 

by using ground truth data or different remote measurement techniques.  

 


